Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(3): 1118-1124, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559710

RESUMO

Dearomatizations provide powerful synthetic routes to rapidly assemble substituted carbocycles and heterocycles found in a plethora of bioactive molecules. Harnessing the advantages of dearomatization typically requires vigorous reagents because of the difficulty in disrupting the stable aromatic core. A relatively mild dearomatization strategy is described that employs lithiated nitriles or isocyanides in a simple SNAr-type addition to form σ-complexes that are trapped by alkylation. The dearomatizations are diastereoselective and efficient and rapidly install two new carbon-carbon bonds, one of which is a quaternary center, as well as nitrile, isocyanide, and cyclohexadiene functionalities.

2.
Nat Commun ; 13(1): 6444, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307409

RESUMO

A dearomatization-dislocation-coupling cascade rapidly transforms aromatic isocyanides into highly functionalized cyclohexadienes. The facile cascade installs an exceptional degree of molecular complexity: three carbon-carbon bonds, two quaternary stereocenters, and three orthogonal functionalities, a cyclohexadiene, a nitrile, and an isocyanide. The tolerance of arylisocyanides makes the method among the mildest dearomatizations ever reported, typically occurring within minutes at -78 °C. Experimental and computational analyses implicate an electron transfer-initiated mechanism involving an unprecedented isocyanide rearrangement followed by radical-radical anion coupling. The dearomatization is fast, proceeds via a complex cascade mechanism supported by experimental and computational insight, and provides complex, synthetically valuable cyclohexadienes.


Assuntos
Cianetos , Cicloexenos , Cianetos/química , Nitrilas , Carbono
3.
Org Biomol Chem ; 18(33): 6467-6482, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32766609

RESUMO

Metalated isocyanides are highly versatile organometallics. Central to the reactivity of metalated isocyanides is the presence of two orthogonally reactive carbons, a highly nucleophilic "carbanion" inductively stabilized by a carbene-like isocyanide carbon. The two reactivities are harnessed in the attack of metalated isocyanides on π-electrophiles where an initial nucleophilic attack leads to an electron pair that cyclizes onto the terminal isocyanide carbon in a rapid route to diverse, nitrogenous heterocycles. Harnessing the potent nucleophilicity of metalated isocyanides while preventing electrophilic attack on the terminal isocyanide carbon has largely been driven by empirical heuristics. This review provides a foundational understanding by surveying the formation, structure, and properties of metalated isocyanides. The focus on the interplay between the structure and reactivity of metalated isocyanides is anticipated to facilitate the development and deployment of these exceptional nucleophiles in complex bond constructions.

4.
ACS Omega ; 5(22): 13384-13388, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548524

RESUMO

A rapid, simple procedure is described for synthesizing trialkyl, dialkylaryl, and alkyldiaryl sulfonium salts that features a selective extraction procedure to access analytically pure sulfonium salts. Alkylation of dialkylsulfides, alkylarylsulfides, and diarylsulfides followed by partitioning between acetonitrile and hexanes efficiently separates nonpolar reactants and byproducts, the usual impurities, to afford analytically pure crystalline and noncrystalline sulfonium salts. The method is efficient, general, and particularly well suited for the preparation of oily sulfonium salts that are otherwise extremely difficult to purify.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...